
(c) 2002 Proligence, Inc.

Oracle Trace: The Swiss Army Knife of Diagnostic Tools by Arup Nanda Page 1 of 4

O

Oracle Trace: The Swiss Army Knife of Diagnostic Tools

by Arup Nanda

Introduction

ne of the hidden jewels in Oracle's
offering is the Oracle Trace, a rarely used tool that
can be like a Swiss Army Knife to a DBA for

performance tuning and evaluation. There are several
reasons why Oracle Trace is seldom used, primarily the lack
of a simple user interface and the inadequate documentation.
Although the purpose of this article is not to fill the gap in
documentation, as it takes much beyond the usual few pages
to describe the power of this tool, I will try to provide as
much information as possible on how it can be used. It is
very important to distinguish Oracle Trace from the more
common SQL Trace, which offers a similar but more limited
functionality in certain areas.

The concept of Oracle Trace can be best described through
an example: Assume you are a DBA of a large Oracle shop
and you have been asked to diagnose a performance-related
problem in an application that runs slower than usual. The
application is canned so you would not be able to place an
sql trace in there directly. There are a few tricks you can pull
to make a diagnosis: you could take a STATSPACK
snapshot before and after the run and a SQL_TRACE using
DBMS_SYSTEM, DBMS_SUPPORT, or oradebug.
STATSPACK will perhaps tell you that the database waited
on several wait events, among which are notably the db file
scattered read, db file sequential read, buffer busy waits and
free buffer waits that constituted about 90 percent of the
waits. SQL_TRACE will generate a trace file that can be run
through TKPROF; which will generate a formatted trace file,
which is perhaps great for diagnosing optimizer plans but not
wait events.

Since the waits are due to excessive buffer manipulation of a
segment, further diagnosis must unearth the segment in
question. However, the sql_trace and tkprof combination
does not provide details at that level. One way to get that is
by setting an event 10046 making the raw trace file contain
the waits information. Although it does contain the waits
data, tkprof ignores it while processing the trace file. The
result is that the raw trace file contents are not compiled into
a readable format making the analysis difficult and
somewhat impossible.

Oracle Trace just makes this task trivial by both collecting
and analyzing. First, we will start Oracle Trace and let the
database run. We define the scope of the collection – user
level, database level and the exact nature of the collections.
After a while, we will shut off the trace collection. Unlike

sql trace, it does not produce a trace file per session, but a
somewhat unreadable file for the entire collection. We will
then run the generated trace file through a formatter, which
loads the data into Oracle database tables. After that, there
are several ways the data could be analyzed – using the
simple sql to the Oracle Enterprise Manager Trace Data
Viewer. In the same example, we would use a query like the
following:

SELECT DISTINCT tablespace_name
FROM DBA_DATA_FILES F, WAITS W
WHERE W.DESCRIPTION = 'db file scattered
read'
AND F.FILE_ID = W.P1

This will instantly tell us the tablespace where this wait
event occurred. Since this is exactly same as the
v$session_wait view's P1, P2 and P3 parameters, you could
even drill down to find out the exact segments where the
problem occurred.

I am sure you now appreciate the value of Oracle Trace tool
over several other tools in offering the same information.
Let's go about setting this up and master the tool as we go
along. In this document, ORACLE_HOME is referred to as
OH for brevity.

Facilities

Each type of event that occurs in an Oracle database is called
a facility in the OT parlance. There are two different kinds of
events: Point Events, where the event occurs as a point in
time, e.g., Connection Established to Server; and Duration
Events, where the event starts and ends with something, e.g.,
Execution of a SQL Statement. Oracle Trace can intercept
and report 13 events, 17 in Oracle9i. A few examples of
events are information about waits, sql statements and cache
IO details. A full listing of events can be obtained from the
manual. Each facility is controlled through Oracle-supplied
files called Facility Definition Files (FDF), which are
located in $OH/otrace/admin/fdf directory.

Init.ora Setting

The following parameters in init.ora control the collection
settings.

oracle_trace_enable It should be set to TRUE; can also be

set via ALTER SESSION.

oracle_trace_collection_name It should either be left unset, in which
case it defaults to “oracle”, or be

(c) 2002 Proligence, Inc.

Oracle Trace: The Swiss Army Knife of Diagnostic Tools by Arup Nanda Page 2 of 4

specified as "" (a blank string). The
exact name for a collection will be set
in the configuration file.

oracle_trace_collection_path It sets the directory where the files
that store the trace data are located.
This defaults to
$OH/otrace/admin/cdf

oracle_trace_facility_name The facility for which the data is
collected, defaulting to oracled,
meaning Oracle Default Events.

oracle_trace_facility_path Defaults to $OH/otrace/admin/fdf,
which contains the FDF files of the
facilities.

Database User

This user stores the trace collection tables. Create a user
called TRACESVR (or any other name) with a password
TRACE and a separate default tablespace, called, say,
TRACEDATA. Grant RESOURCE role to this user.

Setting up the Collection

The collection is controlled by a program called otrccol in
$OH/bin directory. This program takes a configuration file
as a parameter. This file can be kept in any directory, but for
administrative convenience I generally keep them in
$OH/otrace/admin directory. Here are the parameters and
their descriptions.

col_name The collection name. It can be anything meaningful.

cdf_file The name of the collection definition file. It specifies what is

to be collected in that collection. It should be given the
same name as the collection with a cdf extension.

dat_file The name of the file where the output of the collection is
kept. Generally, it's given the same name as collection with
dat extension.

fdf_file The facility definition file to use. Use any of the FDF files
from the $OH/otrace/fdf directory, or the directory defined
by the init.ora parameter.

max_cdf The size in bytes of the trace file that will be generated. A
value of 0 means no limit; a positive value up to 2 GB
indicates when the size is reached the collection should
stop. If this is a negative number, the file will wrap around
deleting the oldest information.

buffer_size Oracle keeps data up to this value in bytes before it writes
to the trace data file.

regid This is an important line and is described below in detail.

username The user name that will be used for formatting. This can
also be set at the command.

password Password of the above user.

service Database Service Name

full_format While formatting, the formatter can use the entire data
contained in data files or only new data elements, which is
controlled by this parameter. Set this to 1 for entire data.

Registration

The most important parameter is regid in the configuration
file that controls what to collect. It contains a line in the
format

1 192216243 <cross facility number> <cross facility
value> 5 <Database SID>

where <cross facility number> is the cross facility we are
interested in. If we are interested in server wait events, we
will use a number 7 here. The <cross facility value> is the
database event code we will trap. The event code
corresponds to the EVENT# column of the
V$EVENT_NAME view. For example if we are tracing db
file scattered read event, we will get the event# first.

SELECT EVENT# FROM V$EVENT_NAME WHERE NAME =
'db file scattered read';

In our case, this is 94; so we will use 94 as the <cross
facility value>. This parameter can also be repeated for each
wait event. If we are interested in also tracing db file
sequential read, buffer busy waits and free buffer waits
events we have to get their event numbers, which turn out to
be 95, 68 and 75 respectively. Finally, our configuration file
trace.cfg looks like this:

col_name= ananda
cdf_file= ananda.cdf
dat_file= ananda.dat
fdf_file= waits.fdf
max_cdf= -10485760
buffer_size = 1048576
regid= 1 192216243 7 95 5 cgr1
regid= 1 192216243 7 94 5 cgr1
regid= 1 192216243 7 68 5 cgr1
regid= 1 192216243 7 75 5 cgr1
username= tracesvr
password= trace
service= AND9
full_format= 1

Starting the Collection

Now that the setup is over, we will start the collection. The
following line given from a command prompt will start the
collection:
otrccol start 99 trace.cfg

The number 99 is the jobid, used for no particular reason.
You can specify any positive non-zero number there. After a
while, stop the collection using
otrccol stop 99 trace.cfg

(c) 2002 Proligence, Inc.

Oracle Trace: The Swiss Army Knife of Diagnostic Tools by Arup Nanda Page 3 of 4

If you look at the collection files directory (as defined in the
init.ora, usually $OH/otrace/admin/cdf) you will notice
two huge files have been generated, named ananda.cdf
and ananda.dat. These contain the data for the trace. To
check whether the collection is going well, you could issue

otrccol check ananda.cdf

You can use the following command to delete the collection
when they are formatted and analyzed:

otrccol dcf ananda ananda.cdf

Formatting

Now comes the time to view the data. The data from the
trace files can be formatted to a report using this command:

otrcrep –w132 ananda.cdf

This produces several text files that are 132 columns wide,
providing much of the output in a report format for quick
viewing; however, the report is not particularly useful. The
better option is to load the data into database tables. This can
be achieved by the command

otrccol format trace.cfg

This creates several tables in TRACESVR schema and loads
data from the trace files. These tables are named in a
somewhat user-unfriendly way, e.g.,
V_192216243_F_5_E_13_8_1. The
understandable synonyms are created
by running under TRACESVR the
script
$OH/otrace/demo/otrsyn.sql.

Viewing the Trace Data

The easiest way to see the data is
using sql. The synonym WAITS in TRACESVR schema
contains the data about the wait events the session
experienced. A simple query like the following will get us
the information:

SELECT p1 "File ID", p2 "Block ID",

p3 "Reason"
FROM WAITS WHERE description = 'db file
scattered read';

We can then join the file id and block id to the
DBA_EXTENTS to find the segment name.

SELECT SEGMENT_NAME FROM DBA_EXTENTS WHERE
FILE_ID = <file_id> and <block_id> BETWEEN
BLOCK_ID and BLOCK_ID + BLOCKS;

This will get us all the information we wanted to know about
the segments that contributed to the problem. The other
columns in the WAITS synonym are also useful.
SESSION_INDEX and SESSION_SERIAL denote the SID
and SERIAL# from V$SESSION for the session that was
affected. TIMESTAMP provides a clue as to when exactly it
happened, which can then be cross checked with the
performance problems times; or the data can be grouped on
TIMESTAMP to know what time most of the problems
appeared. The columns starting with the word CROSS_FAC
are cross facility numbers not used in our analysis here.

The other synonyms that were created also throw light into
what happened during the process. The synonym
CONNECTS records all connections, the OS User, the
machine and much more information to link with the
WAITS table to get a meaningful profile of the application
that was just run. The DISCONNECTS table provides
information on when the session was disconnected. It also
records the time in nanoseconds (TIMESTAMP_NANO
column), making the duration calculation extremely fine-
grained.

Trace Data Viewer

The other option to see the trace data is through the Trace
Data Viewer (TDV) in Enterprise Manager. This provides a
graphical view of the data and click-to-drilldown facility to
analyze data. You can start TDV from OEM's Menu Bar ->
Tools -> Diagnostic Pack submenu. After connecting, you
will see the following screen (Figure 1).

Clicking on the collection brings up the data in that
collection as shown in the screen below (Figure 2).

Clicking on Waits by Total Wait Time gives us the view
(Figure 3).

Drilling down further on the db file scattered read, we could
see the details we were looking for like in Figure 4.

We saw the same figures we saw in the sql approach but in a
graphical manner. You can use either one, based on your
comfort level.

(c) 2002 Proligence, Inc.

Oracle Trace: The Swiss Army Knife of Diagnostic Tools by Arup Nanda Page 4 of 4

Other Uses

So far, we have seen the events where the sessions waited on

some database event. There are several more things you can
do using Oracle Trace in many other instances. If you want
to get the SQL statements that were executed in the sessions,
you could use sql_txn.fdf as the value of the fdf_file
parameter in the configuration file. This will produce all the
SQL Statements, their plans and statistics, much like what
you would get from sql_trace and tkprof, but loaded into
database tables for easier analysis and graphical viewing.

Another very useful application of
Oracle Trace is tracing only for
certain users. For example, if you
want to trace the sessions of only
user ANANDA in the database, you
can find out the USER_ID of the
user from database by issuing
SELECT USER_ID FROM
DBA_USERS WHERE USERNAME =
'ANANDA';

Say this returns 12. You can use the
regid parameter in the configuration
file as
regid= 1 192216243 6 12 5
AND9

The third parameter denotes the
cross facility number and a value of

6 indicates the database user ids. The fourth parameter is the
user id, which is 12 for the user ANANDA.

Conclusion

Oracle Trace provides an extremely
powerful and versatile tool for
several types of diagnoses in the
Oracle database. The possibilities of
what can be done are plenty and it
just needs to be exploited to bring
this to reality. This article did not
attempt to cover all the facilities
offered by the tool, but rather to
introduce it to you with the hope of

steering you towards using it to achieve tangible goals.

About the Author

Arup Nanda has been an Oracle DBA for more than 9 years
specializing in Performance Tuning, Design and
Datawarehousing. He is the founder of Proligence

(www.proligence.com), a New York
area based company providing
specialized Oracle DBA services
like Replication Setup, Parallel
Server and Real Application Server
Installs and Datawarehouse Design
and Development, among others.
When not pulling his hair to resolve
an Oracle problem or presenting at a
User Group, Arup loves playing
tennis and oil painting. He will
appreciate feedback on this article at
arup@proligence.com.

