
Page 20 ◆ SELECT

New Tool on the Block:
Segment Level Statistics
By Arup Nanda

D iagnosis of certain events like buffer busy waits
require identifying the offending segments, a task

easier said than done. Oracle 9iR2 provides a set of
very useful views, called segment level statistics, which make
this trivial. This article discusses how to set them up for
collection of statistics and use the collections, illustrated
with a practical case study.

O

A Database that is Slow
This article provides a way to solve a thorny problem DBAs face, a slow data-
base, while tuning segment level performance statistics. A problem that up
until now was virtually impossible to diagnose. With the advent of a new
feature in Oracle 9i Release 2, diagnosing the problem has become a snap.
Without the knowledge of the application, you are limited to diagnosing the
problem at the database level only. Suppose that you our have pulled the
latest STATSPACK report and here is an excerpt from the Top 5 Wait Events.

It shows that the buffer busy waits event occurred 1,400 times. Perhaps
this contributed to the database sluggishness. A query from V$SYSTAT also
reports the same information. It is necessary to resolve the problem of buffer
busy waits.

Let's examine some of the reasons for buffer busy waits. When a session tries
to update a row, the block containing the row is retrieved from the disk by the
session's server process and placed in the db block buffer pool. What happens
if another session, at the exact same time, tries to update a different row that
happens to be in the same block? The server process of that session tries to
get the block to the disk too, but since the block is being pulled by the first
session, the second session has to wait, which creates a buffer busy wait.

There are numerous ways to reduce the buffer busy waits. These include
increasing the freelist groups and freelists of the affected segment or rear-
ranging the distribution of the rows in the table in such a way that the blocks
are not repeatedly picked up at the same time from two different sessions.
However, to do any of these you must know the exact segment that you are
attempting to tune. The STATSPACK report does not tell us which objects
contributed to the buffer busy waits event. This information is necessary to
continue the tuning. If you query the v$session_wait for the sessions, you can
learn that the offending segment is the columns P1 and P2 in that view, which
correspond to the file_id and block_id of the segment. But problems are
typically reported after the fact and the evidence in v$session_wait disappears
after a session exits.

The traditional approach is to place event 10046 for each of the sessions and
see all the wait events in the generated trace files, which tend to be extremely
large and certainly not in a user-friendly format. In a typical system, which
may contain several hundred applications, this approach may not even be
feasible. Additionally if the applications connect through Multi Threaded
Server, it becomes difficult to isolate a single segment for problems even if
trace analysis is possible.

In Oracle 9iR2, this information is now obtained from the new performance
diagnosis views V$SEGSTAT and V$SEGMENT_STATISTICS after setting up the
collection properly. This article will explore such instrumentation and will
present to the reader, specifically the DBA faced with troubleshooting the
performance problem, the means necessary to find out the wait events on the
specific segments.

Setting the Statistics Levels
In order for Oracle to collect those statistics, you must have proper initializa-
tion parameters set for the instance. The parameter in init.ora is called
STATISTICS_LEVEL. The good news is that it is modifiable via ALTER SYSTEM
command and some underlying parameters are even modifiable via ALTER
SESSION. Let's explore this parameter further; it can take three values.

Avg
Total Wait wait Waits

Event Waits Timeouts Time (s) (ms) /txn
. . . .
buffer busy waits 1400 0 43 7.6 19.3. . . .

3rd Qtr 2003 ◆ Page 21

BASIC: At this setting Oracle does not collect any stats. Although this is not
recommended, you may decide to set this in a fine-tuned production system
to save some overhead.

TYPICAL: This is the default value. In this setting, Oracle collects the
following statistics.

Buffer Cache: This statistics are utilized by the DBA to assess how best to
tune the multiple buffer pools. These statistics can also be collected by setting
another parameter DB_CACHE_ADVICE independently using initialization file,
stored parameter file, ALTER SYSTEM or ALTER SESSION. If it's independently
set then that setting takes preference over the statistics level setting.

Mean Time to Recover:These statistics help the DBA set an acceptable
Mean Time to Recover (MTTR) setting, sometimes due to the requirements
from Service Level Agreements with the users.

Shared Pool Sizing: Oracle can provide valuable clues to size the shared
pool effectively based on usage and these statistics provide that information.

Segment Level Statistics: These statistics are collected at the segment
level to help determine the wait events occurring at each segment. The statis-
tics in this paper are of interest.

PGA Target: These statistics help tune the Program Global Area effectively
based on the usage.

Timed Statistics: This is an old concept. The timed statistics were enabled
in earlier versions with the initialization parameter timed_statistics.
However, the statistic was so useful that Oracle made it default with the setting
of statistic_level. It can be set independently, too. If set, it overrides the
statistics_level setting.

ALL: In this setting all the above statistics are collected as well as an addi-
tional two.

Row Source Execution Statistics: These statistics help tune the sql state-
ments by storing the execution statistics with the parser. This can provide an
extremely useful tool in the development stages.

Timed OS Statistics: Along with the timed statistics, if the operating system
permits it, Oracle can also collect timed stats from the host. Certain operating
systems like UNIX allow it. It too can be set independently. If set, it overrides
the statistics_level setting.

If you set these via any of the three methods, Initialization File, ALTER
SYSTEM or ALTER SESSION, you can find the current setting by querying the
view V$STATISTICS_LEVEL as follows:

The output is as follows.

When starting the tuning process, set the STATISTICS_LEVEL to TYPICAL
either by ALTER SYSTEM or by an initialization parameter file. If it's not set
explicitly, the setting is TYPICAL by default.

Segment Level Statistics Collection
Now that you have set up the collection, let's examine what you can get from
it. The main dynamic performance view that is populated is called
V$SEGSTAT. Here is a description of the view.

Table 1

As you can see, the columns are somewhat cryptic. Oracle provides another
view called V$SEGMENT_STATISTICS, which is based on the above view. This
view has a lot more columns and is more descriptive with respect to object
identification. In addition to columns like the main view, it also references the
names of the tablespace, the object, the owner etc. so that the user can quickly
join the view with actual names. However, this view is a little slow because of a
lot of joins. It's a better idea to get the object_id from the dba_objects and
search v$segstat based on obj# column. Here is the description of the columns
of the V$SEGMENT_STATISTICS view that are not present in the V$SEGSTAT
view. The other columns are the same as in V$SEGSTAT.

Table 2

If you want to find out what statistics are being collected, you can check the
view V$SEGSTAT_NAME, which describes the statistic name and the number.

continued on page 22

SELECT ACTIVATION_LEVEL,
STATISTICS_NAME, SYSTEM_STATUS,
SESSION_STATUS

FROM V$STATISTICS_LEVEL
ORDER BY ACTIVATION_LEVEL, STATISTICS_NAME;

ACTIVAT STATISTICS_NAME SYSTEM_S SESSION_
------- ------------------------- -------- --------
ALL Plan Execution Statistics DISABLED DISABLED
ALL Timed OS Statistics DISABLED DISABLED
TYPICAL Buffer Cache Advice ENABLED ENABLED
TYPICAL MTTR Advice ENABLED ENABLED
TYPICAL PGA Advice ENABLED ENABLED
TYPICAL Segment Level Statistics ENABLED ENABLED
TYPICAL Shared Pool Advice ENABLED ENABLED
TYPICAL Timed Statistics ENABLED ENABLED

Column Explanation

TS# Tablespace Number, corresponds to the TS# column in SYS.TS$

OBJ# The Object ID, corresponds to the OBJECT_ID in
SYS.DBA_OBJECTS.

DATAOBJ# It corresponds to the DATA_OBJECT_ID in SYS.DBA_OBJECTS

STATISTIC_
NAME

The most important one, the name of the statistics of interest

STATISTIC# A unique number to denote each statistics above. This is NOT the
same as the V$SYSSTAT statistics number.

VALUE The current value of that statistic. Please note: the value is cumu-
lative, just like the statistic values in V$SYSSTAT. If you drop the
segment and recreate it, the value is reset.

OWNER The owner of the segment

OBJECT_
NAME

The name of the segment

SUBOBJECT_
NAME

If the above is a partitioned table, each partition has separate
statistics. The partition is referred to as sub-object.

TABLESPACE_
NAME

Tablespace where the segment resides

OBJECT_TYPE Type of the segment, TABLE, INDEX, MATERIALIZED VIEW,
etc.

Page 22 ◆ SELECT

Examining Detailed Statistics
To examine stats for a specific object, you can query as follows:

This provides output similar to the next:

Most of these events are self-descriptive. The above example shows that since
the instance startup the table SALES has been subjected to buffer busy waits
1,649 times, 238,620 blocks have been read for this table, 5 times some
sessions have waited due to lack of Interested Transaction Lists entries in this
table, and 30 times some sessions have waited because some rows have been
locked by other sessions. These are cumulative so the numbers go up as
more operations continue on that segment. Like any system level statistics,
these are reset to zero when the database is shutdown.

The fact that some wait events against the table involve ITL waits indicates the
low setting of INITRANS on that table. The logical and physical read statistics
give important pointers to hot segments. These segment level statistics break
down the mystery surrounding the statistics collected from V$SYSSTAT or
from STATSPACK reports. When baffled with a number of wait events that have
already happened the DBA can fall back on these statistics to dig deeper and
identify the exact segments that experienced these waits which in turn
contributed to the overall system wide wait for that event.

STATSPACK Connection
Statspack is an invaluable tool to collect statistics. The amount of information
collected by statspack is controlled by the parameter "level". Level 5, the
default, collects most of the useful information and level 10 collects more
detailed statistics on latches. In Oracle 9i Release 2, STATSPACK has an
undocumented level 7, which captures the above mentioned wait events.
However, this needs the view V$SEGSTAT to be populated – meaning the
STATTISTICS_LEVEL must be set as described above. To set this level in
STATSPACK data collection, use the command:

This sets the collection to always report the waits for all sessions. If you need
to collect stats for a specific period only, use the following while calling the
snap package only.

This will select from v$segstat and store them. Use the next snap with the
same snap_level to ensure that the v$segstat data is also collected and will
be displayed in the final report.

Enhancements
Examining the view definition of V$SEGMENT_STATISTICS, you will notice
that the view refers to an internal table called X$KSOLSFTS. This internal table
contains a very useful column, namely a column denoting the time when the
statistics were collected. This column, FTS_STMP, can be used to our advan-
tage to provide further information on the wait events. You can create a new
view called SEGSTAT_WITH_TIME. This view is built from the definition of
the V$SEGMENT_STATISTICS after adding the column FTS_STMP. You can
read this column to determine if the statistics are stale and help you assess
whether to rely on them completely. The other important column this view
adds is the INSTANCE_ID, which identifies the instance in a Real Application
Cluster (RAC) environment. Adding these two columns and removing all but
the most useful columns, the view definition is as shown below:

New Tool on the Block: Segment Level Statistics continued from page 21

SELECT STATISTIC_NAME, VALUE
FROM V$SEGMENT_STATISTICS
WHERE OWNER = 'SCOTT'
And OBJECT_NAME = 'SALES';

STATISTIC_NAME VALUE
----------------------------- ----------
logical reads 1363168
buffer busy waits 1649
db block changes 1430448
physical reads 238620
physical writes 15572
physical reads direct 300
physical writes direct 0
global cache cr blocks served 0
global cache current blocks served 0
ITL waits 5
row lock waits 30

execute statspack.modify_statspack_parameter (i_snap_level=>7)

execute statspack.snap (I_snap_level=>7)

create or replace view segstat_with_time as
select s.inst_id Instance_id,

u.name Owner,
o.name Object_name,
o.subname Sub_object_name,
ts.name Tablespace_name,
decode(o.type#,

0, 'NEXT OBJECT',
1, 'INDEX',
2, 'TABLE',
3, 'CLUSTER',
4, 'VIEW',
5, 'SYNONYM',
6, 'SEQUENCE',
7, 'PROCEDURE',
8, 'FUNCTION',
9, 'PACKAGE',
11, 'PACKAGE BODY',
12, 'TRIGGER',
13, 'TYPE',
14, 'TYPE BODY',
19, 'TABLE PARTITION',
20, 'INDEX PARTITION',
21, 'LOB',
22, 'LIBRARY',
23, 'DIRECTORY',
24, 'QUEUE',
28, 'JAVA SOURCE',
29, 'JAVA CLASS',
30, 'JAVA RESOURCE',
32, 'INDEXTYPE',
33, 'OPERATOR',
34, 'TABLE SUBPARTITION',
35, 'INDEX SUBPARTITION',
40, 'LOB PARTITION',
41, 'LOB SUBPARTITION',
42, 'MATERIALIZED VIEW',
43, 'DIMENSION',
44, 'CONTEXT',
47, 'RESOURCE PLAN',
48, 'CONSUMER GROUP',
51, 'SUBSCRIPTION',
52, 'LOCATION',
55, 'XML SCHEMA',
56, 'JAVA DATA',
57, 'SECURITY PROFILE',
'UNDEFINED') Object_type,

s.fts_statnam Statistic_name,
s.fts_staval Value,
to_char(fts_stmp, 'mm/dd/yyyy hh24:mi:ss')

time_stamp
from obj$ o, user$ u, x$ksolsfts s, ts$ ts

Case Study
Now that you know how to setup and use the segment level stats, you should
be able to diagnose some of your most difficult performance problems. To
solidify your understanding, let’s examine a case study you can experiment
with on your own. A scenario with waits was created to enable us to study
and then diagnose it with the segment level statistics. You’ll note that although
the case study simulated the problems as expected when tested by the author,
it is not guaranteed to produce the same behavior elsewhere. It should,
however, help the reader’s understanding of the methodology.

Our example system is of OLTP nature. It shows consistent performance
degradation. The objective of the exercise is to identify the problem and
eliminate it. STATSPACK reports show high waits for buffer busy waits event.
However, since the report that experience these waits does not provide
information on specific tables or indexes, the process of segment tuning
cannot begin.

For the sake of illustration, see the table called SALES. The table is created as
per the example script.

Initially, the table is populated using the following script:

Examining the script closely, you will notice that the customer_id column
values are loaded one bunch at a time, making the records of a particular
customer_id concentrated in a few blocks. Therefore, during an update
where the records are picked up in the customer id sequence, they will be
very likely to be picked from the same block by two different sessions. The
test case transaction is described in the snippet of code following, named
stress.sql.

This program, a simple PL/SQL script updates records with either the odd or
even numbered sales_trans_id depending upon the parameter passed to it,
for each customer_id from 1 to 60. This script is run from two different
sessions. The parameter passed is 0 from one session and 1 from the other,
for example from the first session, issue the SQL command @stress 0. If the
sessions are kicked off at the exact same time, both sessions will operate on
the same customer_id but on different records due to the odd and even
numbered sales_trans_id values, eliminating locking. However, both sessions
will most likely try to update the records in the same block, because the
records are arranged in the customer_id order and both the scripts access
the records for the same customer_id. This creates a buffer busy waits
scenario to identify and eliminate.

Once the table is loaded, execute a STATSPACK report collection. Typically in
a production scenario, you would have enabled the jobs to run STATSPACK
regularly. To collect the statistics, you would have to login as the STATSPACK
user, usually PERFSTAT and issue a command EXECUTE STATSPACK.SNAP.
This provides your baseline collection stats.

Now run the stress script from two different sessions, with parameter 0 in
one session and 1 in other. To execute at the same time, start them using a

3rd Qtr 2003 ◆ Page 23

continued on page 24

where o.owner# = u.user#
and s.fts_inte = 0
and s.fts_objn = o.obj#
and s.fts_tsn = ts.ts#
and s.fts_objd = o.dataobj#
and o.linkname is null
and
(o.type# not in

(1 /* INDEX - handled below */,
10 /* NON-EXISTENT */)
or
(o.type# = 1
and 1 =

(select 1
from ind$ I
where i.obj# = o.obj#
and i.type# in (1, 2, 3, 4, 6, 7, 9)
)

)
)
and o.name != '_NEXT_OBJECT'
and o.name != '_default_auditing_options_'

declare
i number;
j number;
k number := 0;

begin
for i in 1..60 loop

for j in 1..10000 loop
k := k + 1;
insert into sales values
(k, i, 'D'||mod(i,20),

dbms_random.value
(1000000,2000000),

dbms_random.value(1,10),
'INITIAL');

end loop;
end loop;

end;
/

declare
v_cust_id number(6) := 0;

begin
for v_cust_id in 1..60 loop

update sales
set comments = 'CHANGED by &&1'
where customer_id = v_cust_id
and mod(sales_trans_id,2) = &&1;
commit;

end loop;
end;
/
exit

create table sales
(

sales_trans_id number primary key,
customer_id number(2),
product_id char(10),
price number(10,2),
quantity number(5),
comments varchar2(20)

)
pctfree 10 pctused 40
storage (freelists 1 freelist groups 1)
initrans 1 maxtrans 1
/

Page 24 ◆ SELECT

scheduler like cron in UNIX or AT command in Windows. After they run,
collect the STATSPACK statistics again by issuing EXECUTE STATSPACK.SNAP.
To generate the report, run the script spreport.sql under $ORACLE_HOME/
rdbms/admin directory, which will ask you the snap_id for the collections.
Give the snap_ids just before and after the stress script. An excerpt from the
generated report is shown in the next code box. Under the Section "Top 5
Timed Events", you will note that "buffer busy waits" is one. The system waited
3,378 times for 49 seconds, about 2.83% of all the waits times.

Armed with this information, you can identify the segment that experienced
this wait event. Before Oracle 9iR2, this was impossible. In 9iR2, if you have
setup statistics collection by specifying the STATISTIC_LEVEL initialization
parameter, you can run the following query:

The result is something like this. Of course, you may see a lot more in your
environment.

This example shows that the buffer busy waits were experienced by the table
SALES owned by user SCOTT. The figure 3302 also roughly corresponds to
the figure obtained from the STATSPACK report. In addition to the SALES
table, some other SYS owned tables also experienced the same type of wait.
Hence, the number is larger in STATSPACK. You immediately know that the
problem lies in the table SCOTT.SALES. In an actual production system, you
would probably see a lot more tables with the buffer busy waits and the sum
of all will roughly correspond to the figure obtained from STATSPACK report.
This gives the DBA the capability to identify the segment that is either a victim
or creator of a wait event and to take corrective action.

Solution
In the above example, because the offending segment was identified, you can
take corrective steps to fix the problem. Notice that the buffer busy waits
occurred because two sessions were trying to update the same block at the
same time. More even distribution can resolve this. In addition, by making
sure a block is less packed, the likelihood that a block will become hot is
reduced. As a solution, recreate the table with larger PCTFREE and larger
INITRANS and MAXTRANS parameters. This will make the table less dense.
The table creation script is provided in the next code box:

Examine the script closely. It loads the customer_id values one after the other
until the maximum of 60 is reached and the cycle is repeated. This type of
loading eliminates the likelihood that a particular block will be chosen at the
same time by two sessions if the customer_id is the same.

After this change, note the value of VALUE in V$SEGMENT_STATISTICS for the
table SALES. Since the value is cumulative, you will need a reference value to
compare against. Now run the stress.sql script from two sessions the same
way as outlined before, with parameter 0 and 1. Now examine the
V$SEGMENT_STATISTICS view for the table SALES; the stats for buffer busy
waits should be much less. The result of rearranging rows and reducing the
packing factor was reduced probability that two sessions will contend for the
same block thereby reducing the buffer busy waits.

Conclusion
Prior to Oracle 9iR2, this information on the segment level waits could not be
obtained easily and in most cases was infeasible to collect using the 10046
event. With this new tool, it is easy to diagnose and resolve the problem of
buffer busy waits.

Some common wait events like free buffer waits for example are not present in
the V$SEGSTAT. Hopefully, Oracle will provide them in the future releases. This is
no doubt an important step in the right direction. As a result, performance
diagnosis at segment level becomes much easier for the DBA community.

For more information refer to: Oracle 9i Release 2 Manuals at
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/index.htm.
Search on v$segstat or v$segment_statistics for more information. The author
maintains a support page for this article at www.proligence.com/pubsupp.html
where the after print errata, user queries and answers are maintained.

About the Author
Arup Nanda is the founder of Proligence (www.proligence.com), a special-
ized Oracle database services provider in the New York metropolitan area,
which provides tactical and strategic solutions in all phases of an Oracle
project life cycle. An Oracle DBA for more than 10 years, he has touched
almost all aspects of database issues. He specializes in Oracle performance
diagnostics and high availability solutions planning. He has presented at
several Oracle technology conferences including IOUG Live! and authored
articles for several reputed journals, including SELECT. He would appreciate
receiving feedback on this article at arup@proligence.com.

New Tool on the Block: Segment Level Statistics continued from page 23

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                           % Total
Event                     Waits    Time (s) Ela Time
------------------------- ----- ----------- --------
CPU time                                771    44.32
db file scattered read    5,845         428    24.60
db file sequential read   5,680         340    19.54
db file parallel write      894          66     3.80
buffer busy waits         3,378          49     2.83

create table sales
(

.. .. ..
)
pctfree 40 pctused 60
storage (freelists 11 freelist groups 3 )
initrans 4 maxtrans 30
/
[END CODE BOX]
[TEXT]
Next, load the table in a different way as shown.
[BEGIN CODE BOX]

declare 
i     number;

begin
for i in 1..600000 loop

insert into sales values
(i,mod(i,60)+1, 'D'||mod(i,20),
dbms_random.value(1000000,2000000),
dbms_random.value(1,10),'INITIAL');

end loop;
end;
/

SELECT OWNER, OBJECT_TYPE, OBJECT_NAME, VALUE
FROM V$SEGMENT_STATISTICS
WHERE OWNER = 'SYS'
AND STATISTIC_NAME = 'buffer busy waits';

OWNER  OBJECT_TYPE OBJECT_NAME    VALUE
-----  ----------- -----------   ------   
SCOTT  TABLE       SALES           3302


